翻訳と辞書
Words near each other
・ Maxim, New Jersey
・ Maxima
・ Maxima (comics)
・ Maxima (music)
・ Maxima (software)
・ Maxima and minima
・ Maxima auspicia
・ Maxima Caesariensis
・ Maxima clam
・ Maxima Group
・ Maxima of Rome
・ Maxima, Kumasi
・ Maximag
・ Maximal
・ Maximal (Transformers)
Maximal arc
・ Maximal common divisor
・ Maximal compact subgroup
・ Maximal Crazy
・ Maximal element
・ Maximal ergodic theorem
・ Maximal evenness
・ Maximal function
・ Maximal ideal
・ Maximal independent set
・ Maximal information coefficient
・ Maximal lotteries
・ Maximal munch
・ Maximal pair
・ Maximal semilattice quotient


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maximal arc : ウィキペディア英語版
Maximal arc
A Maximal arc in a finite projective plane is a largest possible (''k'',''d'')-arc in that projective plane. If the finite projective plane has order ''q'' (there are ''q''+1 points on any line), then for a maximal arc, ''k'', the number of points of the arc, is the maximum possible (= ''qd'' + ''d'' - ''q'') with the property that no ''d''+1 points of the arc lie on the same line.

==Definition==
Let \pi be a finite projective plane of order ''q'' (not necessarily desarguesian). Maximal arcs of ''degree'' ''d'' ( 2 ≤ ''d'' ≤ ''q''- 1) are (''k'',''d'')-arcs in \pi, where ''k'' is maximal with respect to the parameter ''d'', in other words, ''k'' = ''qd'' + ''d'' - ''q''.
Equivalently, one can define maximal arcs of degree ''d'' in \pi as non-empty sets of points ''K'' such that every line intersects the set either in 0 or ''d'' points.
Some authors permit the degree of a maximal arc to be 1, ''q'' or even ''q''+ 1. Letting ''K'' be a maximal (''k'', ''d'')-arc in a projective plane of order ''q'', if
* ''d'' = 1, ''K'' is a point of the plane,
* ''d'' = ''q'', ''K'' is the complement of a line (an affine plane of order ''q''), and
* ''d'' = ''q'' + 1, ''K'' is the entire projective plane.
All of these cases are considered to be ''trivial'' examples of maximal arcs, existing in any type of projective plane for any value of ''q''. When 2 ≤ ''d'' ≤ ''q''- 1, the maximal arc is called ''non-trivial'', and the definition given above and the properties listed below all refer to non-trivial maximal arcs.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maximal arc」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.